Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Theor Biol ; 557: 111332, 2023 01 21.
Article in English | MEDLINE | ID: covidwho-2313934

ABSTRACT

In March 2020 mathematics became a key part of the scientific advice to the UK government on the pandemic response to COVID-19. Mathematical and statistical modelling provided critical information on the spread of the virus and the potential impact of different interventions. The unprecedented scale of the challenge led the epidemiological modelling community in the UK to be pushed to its limits. At the same time, mathematical modellers across the country were keen to use their knowledge and skills to support the COVID-19 modelling effort. However, this sudden great interest in epidemiological modelling needed to be coordinated to provide much-needed support, and to limit the burden on epidemiological modellers already very stretched for time. In this paper we describe three initiatives set up in the UK in spring 2020 to coordinate the mathematical sciences research community in supporting mathematical modelling of COVID-19. Each initiative had different primary aims and worked to maximise synergies between the various projects. We reflect on the lessons learnt, highlighting the key roles of pre-existing research collaborations and focal centres of coordination in contributing to the success of these initiatives. We conclude with recommendations about important ways in which the scientific research community could be better prepared for future pandemics. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , COVID-19/epidemiology , Learning , Mathematics , United Kingdom/epidemiology
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200274, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309692

ABSTRACT

The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than 1 year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalized individuals, a year for hospitalized individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst-case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387 000 infectious individuals and 125 000 daily new cases; threefold greater than in a scenario with permanent immunity. Our models suggest that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer-term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/trends , Pandemics , SARS-CoV-2/pathogenicity , Basic Reproduction Number/statistics & numerical data , COVID-19/virology , Humans , United Kingdom/epidemiology
3.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200270, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309689

ABSTRACT

Contact tracing is an important tool for allowing countries to ease lockdown policies introduced to combat SARS-CoV-2. For contact tracing to be effective, those with symptoms must self-report themselves while their contacts must self-isolate when asked. However, policies such as legal enforcement of self-isolation can create trade-offs by dissuading individuals from self-reporting. We use an existing branching process model to examine which aspects of contact tracing adherence should be prioritized. We consider an inverse relationship between self-isolation adherence and self-reporting engagement, assuming that increasingly strict self-isolation policies will result in fewer individuals self-reporting to the programme. We find that policies which increase the average duration of self-isolation, or that increase the probability that people self-isolate at all, at the expense of reduced self-reporting rate, will not decrease the risk of a large outbreak and may increase the risk, depending on the strength of the trade-off. These results suggest that policies to increase self-isolation adherence should be implemented carefully. Policies that increase self-isolation adherence at the cost of self-reporting rates should be avoided. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Contact Tracing/statistics & numerical data , Models, Theoretical , Pandemics , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Communicable Disease Control/statistics & numerical data , Disease Outbreaks , Humans , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL